هوش مصنوعی متا | هوش مصنوعی در متاورس

0

هوش مصنوعی متا

هوش مصنوعی هوش مصنوعی را می سازد
زمینه

هوش مصنوعی متا به یک سیستم هوش مصنوعی اطلاق می شود که می تواند به طور خودکار از داده های داده شده یاد بگیرد یا با حداقل نظارت متخصصان انسانی به سرعت با محیط های جدید سازگار شود.

در زمینه‌های مختلف، یادگیری عمیق موفقیت زیادی کسب کرد و بر این اساس، برنامه‌های کاربردی چندگانه از جمله روبات‌های نرم‌افزاری/سخت‌افزاری، پهپادها و خودروهای خودران تولید شد. با این حال، بسیاری از کارشناسان باید زمان و تلاش زیادی را صرف پیاده‌سازی و آموزش موفق مدل‌های یادگیری عمیق کنند. به عنوان راه حل هایی برای کاهش این هزینه ها، تحقیقات متعددی در حال انجام برای اتوماسیون بیشتر بخش های یادگیری عمیق وجود دارد. به این ترتیب، کاربران می توانند به راحتی داده های خود را تجزیه و تحلیل کنند و علاوه بر این، سیستم یادگیری عمیق با کیفیت بالا را حتی به مراتب بهتر از آنچه توسط متخصصان طراحی شده است، پیاده سازی کنند.

996a5a8b d4c1 4f52 845b f18e05570521 - هوش مصنوعی متا | هوش مصنوعی در متاورس
پروژه

در توسعه سیستم هوش مصنوعی متا، باید سه بخش اصلی را در نظر بگیریم: ایجاد رابط هوش مصنوعی متا، توسعه الگوریتم‌های اصلی و ایجاد زیرساخت خوشه‌ای.
ابتدا یک رابط برای ارائه اطلاعات دقیق در مورد فرآیند سیستم به کاربران و همچنین دریافت داده ها و سایر ورودی ها از آنها ایجاد می کنیم. ما همچنین رابط هایی را برای آزمایش مدل های تولید شده و توزیع آنها طراحی می کنیم.

دوم، ما دو نوع الگوریتم اصلی را برای اجرای اتوماسیون پیاده سازی می کنیم. یکی فناوری است که به طور خودکار مناسب ترین ساختار شبکه عصبی را برای یادگیری مجموعه داده های داده شده پیدا می کند. پیش از این، به دلیل فضای جستجوی عظیم معماری‌های شبکه، زمان زیادی طول می‌کشید، اما اخیراً یک نمایش معماری در فضای پیوسته پیشنهاد شده است و این امکان جستجوی کارآمد معماری شبکه با الگوریتم‌های بهینه‌سازی را فراهم می‌کند. علاوه بر این، ما همچنین سعی می کنیم تکنیکی را پیاده سازی کنیم که بتواند نه تنها ماژول های از پیش تعریف شده را در شبکه ها، بلکه کل ساختار شبکه های عصبی را جستجو کند. دیگری انتخاب خودکار فراپارامترهای مورد استفاده در یادگیری ماشینی است. به عنوان مثال، قبل از آموزش، متخصصان باید با در نظر گرفتن ویژگی های وظایف محوله، فراپارامترها – پارامترهای مورد نیاز برای یادگیری عمیق – را به درستی بر اساس تجربه و دانش خود تنظیم کنند، اما این امر مستلزم نیروی انسانی قابل توجهی و همچنین زمان است. از طریق انتخاب خودکار فراپارامترها، ما سعی می‌کنیم خدماتی را طراحی کنیم تا مدل‌هایی را ارائه کنیم که بتوانند طبق درخواست کاربران به طور کارآمد عمل کنند و در عین حال مشارکت کارشناسان و کاربران را به حداقل برسانیم.

در نهایت، برای پیاده‌سازی الگوریتم‌های فوق، زیرساخت خوشه‌ای GPU را برای آموزش مدل‌ها و موازی‌سازی فرآیند جستجو ایجاد می‌کنیم و سیستم نظارتی را برای مدیریت کارآمد کل سیستم طراحی می‌کنیم.

علاوه بر این، تحقیقات ما شامل تکنیک‌های اتوماسیون در یادگیری ماشین، مانند بهینه‌سازی معماری و استفاده از داده‌های آموزشی است. به عنوان مثال، تخصیص تصادفی وزن‌ها در شبکه عصبی قبل از آموزش معمول است، اما برای توسعه شبکه‌های عصبی که می‌توانند سریع‌تر با مجموعه داده جدید سازگار شوند، ما در مورد فرا یادگیری برای یافتن مقدار اولیه اولیه وزن‌ها و همچنین انتقال، تحقیق می‌کنیم. یادگیری استفاده از وزن های موجود وظایف قبلی

نتیجه

از آنجایی که هوش مصنوعی متا می تواند به عنوان یک ابزار خودکار عالی عمل کند، می توان از سیستم هوش مصنوعی متا ما در پروژه های مختلف مرتبط با یادگیری عمیق استفاده کرد. علاوه بر این، در این جامعه بیش از حد متصل و فوق هوشمند، تقاضا برای پردازش داده ها در حال افزایش است. با این شتاب، هوش مصنوعی متا مطمئناً در آینده نزدیک برای کاربران متعددی سود خواهد داشت.

منابع

  • [1] B. Zoph, V. Vasudevan, J. Shlens, QV Le, Learning Transferable Architectures for Scalable Image Recognition, https://arxiv.org/abs/1707.07012
  • [2] H. Liu, K. Simonyan, Y. Yang, DARTS: Differentiable Architecture Search, Seventh International Conference on Learning Representations (ICLR2019), https://openreview.net/forum?id=S1eYHoC5FX
  • [3] R. Luo, F. Tian, ​​T. Qin, E. Chen, T.-Y. لیو، بهینه‌سازی معماری عصبی، پیشرفت‌ها در سیستم‌های پردازش اطلاعات عصبی 31 (NeurIPS2018)، http://papers.nips.cc/paper/8007-neural-architecture-optimization
  • [4] M. Feurer, F. Hutter, Hyperparameter Optimization, Automatic Machine Learning: Methods, Systems, Challenges, pp. 3-38, Springer, 2018. https://www.automl.org/wp-content/uploads/ 2018/09/chapter1-hpo.pdf
  • [5] C. Finn, P. Abbeel, S. Levine, Model-Agnostic Meta-Learning for Fast Adaptation of Deep Network, مجموعه مقالات سی و چهارمین کنفرانس بین المللی یادگیری ماشین (ICML2017)، http://proceedings.mlr.press /v70/finn17a.html
  • [6] K. Li, J. Malik, Learning to Optimize, مجموعه مقالات پنجمین کنفرانس بین المللی بازنمایی یادگیری, 2017.
  • [7] Y. Fan، F. Tian، T. Qin، J Bian، T.-Y. لیو، یادگیری چه داده هایی برای یادگیری، https://arxiv.org/abs/1702.08635

منبع : skt

مرضیه ثاقب علیزاده پاسخ انتخاب شده به عنوان بهترین ژانویه 27, 2024
گذاشتن نظر
0

27b92a68e27e976c74614a7782d86bc9aad039ea 796 - هوش مصنوعی متا | هوش مصنوعی در متاورس

تکامل هوش مصنوعی: به سمت خودکفایی و اتوماسیون

هوش مصنوعی متا (Meta AI)، نسل جدیدی از سیستم‌های هوش مصنوعی است که به خودی خود قادرند از داده‌های موجود یادگیری کنند یا با کمترین نیاز به نظارت توسط متخصصان انسانی، خود را به محیط‌های نوین و متغیر تطبیق دهند.

دستاوردها و چالش‌های یادگیری عمیق

یادگیری عمیق در حوزه‌های مختلفی مانند رباتیک، پهپادها و خودروهای خودران به موفقیت‌های چشمگیری دست یافته است. با این حال، پیاده‌سازی و آموزش مدل‌های یادگیری عمیق نیازمند تلاش و زمان قابل توجهی از سوی کارشناسان است.

راه‌حل‌های موجود برای کاهش هزینه‌ها

برای مقابله با این چالش‌ها، تحقیقات گسترده‌ای در جریان است که هدف آن‌ها اتوماتیک‌سازی بیشتر فرآیندهای مربوط به یادگیری عمیق است. این اتوماسیون به کاربران امکان می‌دهد تا به راحتی داده‌های خود را تجزیه و تحلیل کنند و در عین حال، سیستم‌های یادگیری عمیق با کیفیت بالاتری نسبت به آنچه توسط متخصصان طراحی شده است، ایجاد کنند.

سمت و سوی هوش مصنوعی متا

هوش مصنوعی متا به سمت خودکفایی و خوداتوماسیون حرکت می‌کند. این نوع سیستم‌ها قادرند با استفاده از الگوریتم‌های پیشرفته و قابلیت‌های یادگیری خود-تقویت‌کننده، به طور مستقل و با کارایی بالا عمل کنند. این پیشرفت‌ها در هوش مصنوعی نه تنها برای توسعه‌دهندگان و متخصصان، بلکه برای کاربران عادی نیز، امکانات جدید و وسیعی را در اختیار قرار می‌دهد. این تغییرات، هوش مصنوعی را به یک ابزار قدرتمند برای حل مسائل پیچیده و خودکارسازی فرآیندها تبدیل می‌کند.

مرضیه ثاقب علیزاده پاسخ انتخاب شده به عنوان بهترین ژانویه 27, 2024
گذاشتن نظر
شما در حال مشاهده 1 از 1 پاسخ هستید ، برای دیدن همه پاسخها اینجا را کلیک کنید .
پاسخ خود را بنویسید .
  • فعال
  • بازدیدها1386 times
  • پاسخ ها1 پاسخ
ورود به متاورس | متاورس ایرانی
ورود به متاورس ایران یا همان متاورس ملی

علامت ذره بین Tutorials سمت راست به رنگ قرمز به شما کمک خواهد کرد .

جدید ترین سوالات پرسیده شده

منقضی شدن سم بتانال 1 پاسخ | 0 آرا
ایا ایدز گزفتم؟ 0 پاسخ ها | 0 آرا
انتخاب ورزش رزمی 0 پاسخ ها | 1 رای
وزارت تعاون کار و رفاه اجتماعی نماد اعتماد الکترونیک اسناد و املاک کشور مرکز آموزش ویدیویی انجمن حم فروشگاه ملی تولید کنندگان مدیریت بر مدیران حم سامانه حیوانات رسانه ملی اخبار متا دانشگاه متاورس استخدام | دانش فروشگاه حم تبلیغات ملی بازار NFT متاورس رنگ نقشه ملی سه بعدی متا املاک و مستغلات